Home
Class 11
MATHS
Show that (a+ib)(c+id)=x+iyimplies(a-ib)...

Show that `(a+ib)(c+id)=x+iyimplies(a-ib)(c-id)=x-iy`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+ib)/(c-id)=x+iy ,then prove that (a+ib)/(c-id)=x+iy and (a^2+b^2)/(c^2+d^2)=x^2+y^2

Show that a + b + c = b + c + a

Show that a + b + c = c + a + b

Show that C_P- C_V = R

If sqrt(a+ib)=x+iy ,prove that sqrt(a-ib)=x-iy

Show that: (a-b)(a+b)+ (b-c) (b+c) +(c-a) (c+a) =0

Show that in a triangle ABC, (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

If (a+ib)(c+id)=x+iy ,prove that x^2+y^2=(a^2+b^2)(c^2+d^2)

Show that in a triangle ABC, a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

If a,b,c,d are in G.P then show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2 .