Home
Class 11
MATHS
If z1, z2, z3 represent vertices of an e...

If `z_1`, `z_2`, `z_3` represent vertices of an equilateral triangle such that `|z_1|`= `|z_2|`=`|z_3|`show that `z_1+z_2+z_3=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any complex number z show that zbar z=|z|^2

For any two complex numbers z1 and z2 ,prove that |z1.z2|=|z1|.|z2|

Using properties of determinant show that : |(y+z,x,x),(y,z+x,y),(z,z,x+y)|=4xyz

If z_1 , and z_2 be two complex numbers prove that |z_1+z_2|^2+|z_1-z_2|^2=2[|z_1|^2+|z_2|^2]

Write any two complex numbers,then show that |z1+z2|^2+|z1-z2|^2=2(|z1|^2+|z2|^2)

If z=x+iy and |2z+1|=|z-3| ,then show that 3x^2+3y^2+10x=8 .

If z_1 , and z_2 be two complex numbers prove that z_1barz_1=|z_1|^2

Solve the following equations and check you results. 4z + 3 = 6 + 2z

If z_1 , and z_2 be two complex numbers prove that bar(z_1+-z_2)=barz_1+-barz_2

If z be a complex number, show that the minimum value of |z| + |z - 1| is 1.