Home
Class 11
MATHS
Prove that the locus of the points of in...

Prove that the locus of the points of intersection of the lines x cos `alpha` + y sin `alpha` = a and x sin `alpha` - y cos `albha` = b is a cicle, whatever may be `alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find cot^2 alpha- cos^2 alpha . .

If A =[(cos alpha, sin alpha),(-sin alpha, cos alpha)] , then find A^(T) A.

Find cot^2 theta - sin^2 alpha . .

If A=[(cos alpha, -sin alpha),(sin alpha, cos alpha)] and A+A^(T) =l , write down the general values of alpha .

Solve sin 3alpha=4 sin alpha sin (x+alpha)sin(x-alpha) where alpha=n pi,n in Z .

If cos9alpha=sinalpha and 9alpha<90^@ then the value of tan 5alpha is

If sqrt2sin (60^@ -alpha)= 1 , then alpha is :

Find dy/dx : x = cos theta + sin theta, y = sin theta - theta cos theta

Evaluate the integrals int(cos2x - cos2alpha)/(cosx - cos alpha) dx

Form the differential equation from the given relation : y = A sin x + B cos x + x sin x