Home
Class 11
MATHS
Statement-l : tan((6pi)/7)-tan((5pi)/7)-...

Statement-l : `tan((6pi)/7)-tan((5pi)/7)-tan(pi/7)=tan((6pi)/7).tan((5pi)/7).tan(pi/7)`. because Statement-2:If `theta=alpha+beta`, then `tan theta-tan alpha-tan beta= tan theta.tanalpha. tan beta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate tan ((pi)/20).tan((3pi)/20).tan((5pi)/20).tan((7pi)/20).tan((9pi)/20 )

tan((pi)/(20))tan(3(pi)/(20))tan(5(pi)/(20))tan(7(pi)/(20))tan(9(pi)/ (20))

2tan^(-1)(tan((7pi)/6))

If alpha=(2 pi)/(7), then tan alpha tan2 alpha+tan2 alpha tan4 alpha+tan4 alpha tan alpha

tan^(-1)(tan((6 pi)/(7)))

tan^(-1)(tan((7pi)/6))

Prove that tan (pi/12)tan((5pi)/12)tan ((7pi)/12)tan((11pi)/12)=1

tan((pi)/(10))+tan((3 pi)/(10))+tan((7 pi)/(10))+tan((9 pi)/(10))=

Show that: If theta=(2 pi)/(7), prove that tan theta tan2 theta+tan2 theta tan4 theta+tan4 theta tan theta=

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=