Home
Class 12
PHYSICS
There are two holes each along the oppos...

There are two holes each along the opposite sides of a wide rectangular tank. The cross section of each hole is `0.01 m^2` and the vertical distance between the holes is one meter. The tank is filled with water. The net force on the tank in newton when the water flows out of the holes is ( density of water = 1000 kg/m^3)

A

100

B

200

C

300

D

400

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

With what velocity does water flow out of an orifice in a tank with gauge pressure 4xx10^5 N//m^2 before the flow starts? Density of water= 1000kg//m^3

A cylinder of height 20 m is completely filled with water. The velocity of efflux of water through a hole on the side wall of the cylinder near its bottom is (Take g=10 m s^(-2) )

There is a hole in the bottom of a tank having water. If total pressure at bottom is 3 atm, then the velocity of water flowing from hole is

A capillary tube of diameter 0.6 mm dipped vertically into water. It rises to height of 6 cm in capillary tube, find the surface tension of water. (Given: density of water = 1000 kg//m^3, g = 9.8 m//s^2 ).

There is a small hole at the bottom of tank filled with water. If total pressure at the bottom is 3 atm(1 atm=10^(5)Nm^(-2)) , then find the velocity of water flowing from hole.

A water tank on the ground with water upto a height of 20 m has a small orifice in its wall at a distance 10 m below the surface level of water. Then the horizontal distance from the hole at which the water touches the ground is

Calculate the rise of water inside a clean glass capillary tube of radius 0.1 mm when immersed in water of surface tension 7 xx 10^-2N//m . The angle of contact between water and glass is zero, density of water = 1000 kg//m^3, g = 9.8 m//s^2

A large open tank has two holes in the wall. One is a square hole of side L at a depth y from the top and the other is a circular hole of radius R at a depth 4y from the top. When the tank is completely filled with water, the quantities of water flowing out per second from both holes are the same. Then, R is equal to