Home
Class 12
MATHS
The range of function f(x)=cos^2x -5 cos...

The range of function `f(x)=cos^2x -5 cos x -9` is

A

`[-13,3]`

B

[0, 3]

C

`[-13, -3]`

D

`[-13, -9]`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=cos^(2)x -5 cos x -9`
`=(cos^(2)x -5 cos x +(25)/(4)) -9-(25)/(4)`
`=(cos x -(5)/(2))^(2) -(61)/(4)" "…(i)`
where `(9)/(4) le (cos x -(5)/(2))^(2) le (49)/(4)" " …(ii)`
`:.` from (i) and (ii) `-13 le f(x) le -3`
`rArr ` Range of `f(x) in [-13, -3] `
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of function f(x)=cos^(2)x-5cos x-9 is

Find the range of function f(x)=1+3cos2x

If [sin x]+[2cos x]=-3 then the range of the function f(x)=sin x+cos x is

The range of the function f(x)=2|sin x|-3|cos x| is

The range of the function f(x)=3|sin x|-2|cos x| is :

Range of function f(x)=3|sin x|-4|cos x|

Find the range of the function f(x)=4cos^(3)x-8cos(2)x+1 .

The function f(x)=|cos x| is

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)

The ranges of the functions (2)/(2+3cos x)