Home
Class 12
MATHS
Let f(x) = [x]^(2) + [x+1] - 3, where [....

Let f(x) `= [x]^(2) + [x+1] - 3`, where [.] denotes the greatest integer function. Then

A

`f(x) ne 0` for all real values of x

B

f (x) = 0 for only two real value of x

C

f (x) = 0 for infinite values of x

D

f (x) = 0 for no real value of x

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=[x]^(2) +[x+1]-3=0`
`[x]^(2) +[x]+1-3=0`
`[x]^(2) +[x]-2=0`
`{[x] +2} {[x] -1}=0`
`rArr [x] = -2, [x]=1`
`rArr x in [-2, -1) cup [1,2)` Hence f (x) = 0 for infinite values of x.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

Let f(x)=1+|x|, x lt -1 [x], x ge -1 , where [.] denotes the greatest integer function. Then f{f(-2,3)} is equal to

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.