Home
Class 12
MATHS
Show that : sin[cos^-1{tan(sec^-1 x)}]=s...

Show that : `sin[cos^-1{tan(sec^-1 x)}]=sqrt(2-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin[cot^-1{tan(cos^-1 x)}]=x

Show that : {cos(sin^-1 x)}^2={sin(cos^-1 x)}^2

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Show that tan^-1frac{x}{sqrt(a^2-x^2)}=sin^-1frac{x}{a}

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)})=pi/4-1/2cos^-1 x

Prove the following: sin^-1x = tan^-1(frac{x}{sqrt(1-x^2)})

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}{x})

Find the derivative of : y= sin^-1(1-x)+sqrt(2x-x^2)

Show that : sec^2(tan^-1 3)+cosec^2(cot^-1 5)=36