Home
Class 12
MATHS
Show that : cos^-1(frac{cosx+cosy}{1+cos...

Show that : `cos^-1(frac{cosx+cosy}{1+cosxcosy})=2tan^-1(tanfrac{x}{2}tanfrac{y}{2})`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : cos^-1frac{4}{5}+cos^-1frac{12}{13}=cos^-1frac{33}{65}

Show that : tan^-1frac{1}{3}+tan^-1frac{1}{5}+tan^-1frac{1}{7}+tan^-1frac{1}{8}=pi/4

Show that : cos(2tan^-1frac{1}{7})=sin(4tan^-1frac{1}{3})

Show that : cot^-1frac{1+xy}{x-y}+cot^-1frac{1+yz}{y-z}+cot^-1frac{1+zx}{z-x}=0

Show that : cos^-1frac{12}{13}+sin^-1frac{3}{5}=sin^-1frac{56}{65}

Show that : {cos(sin^-1 x)}^2={sin(cos^-1 x)}^2

Show that : tan^-1frac{1}{7}+tan^-1frac{1}{13}=tan^-1frac{2}{9}

Solve : tan^-1frac{1}{a-1}=tan^-1frac{1}{x}+tan^-1frac{1}{a^2-x+1}

Evaluate : cos(tan^-1frac{3}{4})

Show that tan^-1(frac{3a^2x-x^3}{a^3-3ax^2})=3tan^-1frac{x}{a}