Home
Class 12
MATHS
Solve for x : tan^-1(1+x)+tan^-1(1-x)=pi...

Solve for x : `tan^-1(1+x)+tan^-1(1-x)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : tan^-1(x-1)+tan^-1 x+tan^-1(x+1)=tan^-1 3x

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

Solve for x : 2tan^-1(cos x)=tan^-1(2cosec x)

Solve : tan^-1 2x+tan^-1 3x=pi/4

Solve for x : 2 tan^-1 x+sec^-1 x=pi/2

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve for x : tan^-1frac{x-1}{x-2}+tan^-1frac{x+1}{x+2}=pi/4

Solve for x : tan^-1frac{1-x}{1+x}=1/2tan^-1 x,x>0

Solve the following equation for x. tan^(-1)((x+1)/(x-1)) +tan^(-1)((x-1)/(x)) =tan^(-1)(-7)

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .