Home
Class 12
MATHS
Construct a 3xx4 matrix [a(ij)], where a...

Construct a `3xx4` matrix `[a_(ij)]`, where `a_(ij)=2i-j`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Construct a 3xx4 matrix [a_(ij)] , where a_(ij)=1/2|-3i+j| .

Construct a 2xx2 matrix A[a_(ij)] , whose elements a_(ij) are given by a_(ij)=i+2j .

Write a 2xx2 matrix A = [a_(ij)] , whose elements are a_(ij)=i-j .

Construct a 2xx3 matrix A, whose elements are given by a_(ij) =((i-2j)^(2))/(2) .

Let A=[a_(ij)] is a square matrix of order 2 where a_(ij)=i^(2)-j^(2) . Then A is (i) Skew - symmetric matrix (ii) Symmetric matrix (iii) Diagonal matrix (iv) None of these

If A=[a_(ij)]" is a "2xx2 matrix and a_(ij) =((i+2j)^(2))/(2) , write down the matrix completely.

If A=|a_(ij)|" is a"2xx3 matrix and a_(ij) = 1 +ij , then write down the matrix completely.

Express the matrix A as the sum of a symmetric matrix and a skew-symmetric matrix, where A=[(2,4,-6),(7,3,5),(1,-2,4)]

Construct 2 polynomials with 4 or more terms.

Examine the existence of inverse matrix and find the inverse matrix I it exists : A=[(1,2),(3,4)]