Home
Class 12
MATHS
Examine whether A^2-2B is singular, give...

Examine whether `A^2-2B` is singular, given : `A=[(-1,1,2),(3,0,4),(2,1,-2)] and B=[(2,-3,-4),(-1,0,-1),(0,-1,0)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find A+B whichever exists, given : A=[(2,-1,3),(-3,2,0),(5,1,-1)], B=[(-3,2,-1),(0,5,2),(1,-2,1)]

If A=[(1,1),(1,1)] and B=[(2,-1),(0,1)] , find 2A+3B .

For what value of x, the matrix A is singular? : A=[(x,2,3),(0,2,3),(1,2,3)]

Find the matrices A and B if A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)]

If A=[(2,0),(1,4)] and B=[(-1,2),(3,0)] , then find (AB)'.

If A=[(4,2),(-1,1)], I=[(1,0),(0,1)] show that (A-2I)(A-3I)=[(0,0),(0,0)]

If A=[(2,-1),(3,2)] and B =[(0,4),(-1,7)] , then find 3A^(2) -2B+1 .

Find X, if Y=[(3,2),(1,4)] and 2X+Y=[(1,0),(-3,2)]

Find the matrices A and B, if A+B =[(5,2),(0,9)] and A-B =[(3,6),(0,-1)]