Home
Class 14
MATHS
What is lim(thetato0)(sqrt(1-costheta))...

What is `lim_(thetato0)(sqrt(1-costheta))/(theta)` equal to ?

A

`sqrt2`

B

`2sqrt2`

C

`1/sqrt2`

D

`1/(2sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise question|15 Videos
  • SIMPLE INTEREST

    RS AGGARWAL|Exercise All Questions|124 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    RS AGGARWAL|Exercise All Questions|219 Videos

Similar Questions

Explore conceptually related problems

lim_(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

lim_ (e-> 0) (sqrt (1-cos theta)) / (theta)

int(1-costheta)^2 d theta is equal to

What is (sintheta)/("cosec "theta)+(costheta)/(sectheta) equal to ?

What is lim_(xto0) (sqrt(1+x-1))/(x)

If pi le theta le (3pi)/2 , then sqrt((1+cos theta)/(1-costheta))+sqrt((1-costheta)/(1+costheta)) is equal to :

If a=min {x^2+4x+5:x in R} and b=lim_(thetato 0) (1-cos 2theta)/(theta^2) , then the value of sum_(r=0)^(n) .^nC_ra^rb^(n-r) , is

What is lim_(xto0) (x)/(sqrt(1-cosx)) equal to ?