Home
Class 12
MATHS
For what real values of a' and 'b' all t...

For what real values of a' and 'b' all the extrema of the function `f(x)=(5a^2)/3 x^3+2ax^2-9x +b` are positive and the maximum is at the point `x_0=-5/9`

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of a and b for which all the extrema of the function, f(x)=a^(2)x^(3)-0.5ax^(2)-2x-b, is positive and the minima is at the point x_(0)=(1)/(3), are

Find the extreme values of the function y=2x^3-9x^2+12x+5

Find the maximum value of the function f(x)=5+9x-18x^(2)

The function f (x) = (2-x)/(9x-x^(3)) is:

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

Consider the function f(x)=0.75x^(4)-x^(3)-9x^(2)+7 What is the maximum value of the function ?

Find the values of a for which the function f(x)=(a+2)x^(3)-3ax^(2)+9ax-a decreasing for all real values of x.

Find the values 'a' for which the function f(x)=(a+2)x^(3)-3ax^(2)+9ax-1 decreases for all real values of x