Home
Class 11
MATHS
Let x(0), y(0) be fixed real numbers suc...

Let `x_(0), y_(0)` be fixed real numbers such that `x_(0)^(2)+y_(0)^(2)gt1`. If x, y are arbitrary real numbers such that `x^(2)+y^(2)le1`, then the minimum value of `(x-x_(0))^(2)+(y-y_(0))^(2)` is

A

`(sqrt(x_0^2+y_0^2)-1)^2`

B

x_0^2+y_0^2-1`

C

`(abs(x_0)+abs(y_0)-1)^2`

D

`(abs(x_0)+abs(y_0))^2-1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y>0, then the minimum value of 2x^(2)+(2)/(x)-2x+y^(2)+(2)/(y)+1 is

Let x and y be two real variable such that x>0 and xy=1. Find the minimum value of x+y

If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

If x>0,y>0,z>0 and x+y+z=1 then the minimum value of (x)/(2-x)+(y)/(2-y)+(z)/(2-z) is

If x gt 0, y gt 0 then minimum value of (x+y)(1/x+ 1/y) is

If x,y are real and (x-1)^(2)+(y-4)^(2)=0 then the value of x^(3)+y^(3) is

If x, y, z are real and distinct, then x^(2) + 4 y^(2) + x + 1 = 0 , is