Home
Class 11
MATHS
Let N1=2^55+1 and N2=165. Then...

Let `N_1=2^55+1` and `N_2=165`. Then

A

`N_1` and `N_2` are coprime

B

the HCF (Highest common factor) of `N_1` and `N_2` is 55

C

the HCF of `N_1` and `N_2` is 11

D

the HCF of `N_1` and `N_2` is 33

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let U_(1)=1,U_(2)=1 and U_(n+2)=U_(n+1)+U_(n) for n>=1. Use mathematical induction to such that: :U_(n)=(1)/(sqrt(5)){((1+sqrt(5))/(2))^(n)-((1-sqrt(5))/(2))^(n)} for all n>1

Let {a _(n)} _( n -1) ^(oo) be a sequene such that a _(1) = 1, a _(2) = 1 and a _( n+2) = 2 a _( n +1) + a _(n) for all n ge 1. Then the value of 47 sum _( n -1) ^(oo) ( a _(n))/( 2 ^( 3n)) is equal to ____________.

Let a_(n) = (1+1/n)^(n) . Then for each n in N

Let a=(4^(1/401)-1) and let b_n = nC_1 + nC_2 . a+ nC_3. a^2+......+ nC_n .a^(n-1). Find the value of (b_2006 – b_2005)

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Let a gt 1 and n in N . Prove that inequality , a^(n)-1 ge n (a^((n+1)/(2))-a^((n-1)/(2))) .

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

Let (l_1,m_1,n_1) and (l_2,m_2,n_2) be d.c's of two lines.Then the lines are parallel if l_1/l_2=m_1/m_2=n_1/n_2 (Prove It)

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :