Home
Class 11
MATHS
If two roots of the equation (p-1)(x^2 +...

If two roots of the equation `(p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0` are real and distinct and `f(x)=(1-x)/(1+x)` then `f(f(x))+f(f(1/x))` is equal to

A

p

B

(-p)

C

2p

D

(-2p)

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If the two roots of the equation (c-1)(x^2+x+1)^2-(c+1)(x^4+x^2+1)=0 and real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x))= (A) -c (B) c (C) 2c (D) none of these

If f(x)=(1)/(1-x), then f(f(f(x))) is equal to

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) , "then f "((2x)/(1+x^(2))) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=(1+x)/(1-x) then f(x)*(f(x^(2)))/(1+(f(x))^(2))

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If 2f (x +1) +f ((1)/( x +1))=2x, then f(2) is equal to