Home
Class 12
MATHS
The value of x satisfying the equation ...

The value of x satisfying the equation `tan^(-1)(2x)+tan^(-1)3x=(pi)/(4)` is

Text Solution

Verified by Experts

`tan^-1 (2x) + tan^-1( 3x) = pi / 4`
`tan^-1( [2x + 3x] / [1 – (2x) (3x)]) = pi / 4`
`tan^-1 ([5x] / [1 – 6x^2]) = tan^-1 (1)`
`[5x] / [1 – 6x^2] = 1`
`[1 – 6x^2] = 5x`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve :tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

Solve tan^(-1)2x + tan^(-1)3x = pi/4

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4