Home
Class 11
MATHS
If x^(y)=y^(x), prove that (dy)/(dx)=((y...

If `x^(y)=y^(x)`, prove that `(dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If x=e^((x)/(y)), prove that (dy)/(dx)=(x-y)/(x log x)

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)