Home
Class 12
MATHS
यदि e^(x)+e^(y)=e^(x+y), तब सिद्ध कीजिए ...

यदि `e^(x)+e^(y)=e^(x+y),` तब सिद्ध कीजिए कि- `(dy)/(dx)+e^(y-x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

(dy) / (dx) = e ^ (x + y)

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

(dy)/(dx)=(x+e^x)/(y+e^y)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

e^(y)(dy)/(dx)=e^(x)+x^(2)

If y =(e^(x) +e^(-x))/( e^(x) - e^(-x)) ,then (dy)/(dx) =

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=