Home
Class 11
MATHS
underset(xrarr-2)"lim"((1)/(x)+(1)/(2))/...

`underset(xrarr-2)"lim"((1)/(x)+(1)/(2))/(x+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)

underset( x rarr 1 ) ("lim") (1-x)/( 1-x^(2))=

Evaluate the following limits and justify each step. underset(xrarr -2) ( "Lim") ( x^(3)+2x^(2) -1)/(5-3x)

Evaluate the following limits and justify each step. underset(xrarr5) ( "Lim") ( 2x^(2)-3x+ 4)

What is underset(xrarr(pi)/(2))limf(x)=underset(xrarr(pi)/(2))lim(1-sinx)/((pi-2x)^(2)) equal to ?

underset x rarr2^(-)lim_(x rarr2^(-))[(x^(2))/(a)]^((1)/(|x-2|))=1 Then find the range of

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr -oo)("Lim") f(x)

If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x to 1)lim ((x-a)(x-b)(x-c))/((x+1))=

Find the limits : underset(x to oo)lim ((1+x)/(2+x))^((1-sqrtx)//(1-x)) (b) underset(x to oo)lim ((x^(2)+2x-1)/(2x^(2)-3x-2))^((2x+1)//(x-1))