Home
Class 12
MATHS
If the curves (x^2)/(a^2)+(y^2)/(b^2)=1 ...

If the curves `(x^2)/(a^2)+(y^2)/(b^2)=1 and (x^2)/(l^2)-(y^2)/(m^2)=1`cut each other orthogonally then.....

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves (x^(2))/(l^(2))+(y^(2))/(m^(2))=1 and (x^(2))/(64)+(y^(2))/(25)=1 cut each other orthogonally then l^(2)-m^(2)

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If the curve ax^(2) + 3y^(2) = 1 and 2x^2 + 6y^2 = 1 cut each other orthogonally then the value of 2a :

Prove that the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(x^(2))/(a^(12))+(y^(2))/(b^(2))=1 intersect orthogonally if a^(2)-a^(2)=b^(2)-b^(2)

If the curves x^((2)/(3))+y^((2)/(3))=c^((2)/(3)) and (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches each other,then which of the following is/are true?

The curve x^(2)-y^(2)=5 and (x^(2))/(18)+(y^(2))/(8)=1 cut each other at any common point at an angle-

For what value of k is the circle x^(2)+y^(2)+5x+3y+7=0 and x^(2)+y^(2)-8x+6y+k=0 cut each other orthogonally.

Show that the curve x^(3)-3xy^(2)=a and 3x^(2)y-y^(3)=b cut each other orthogonally, where a and b are constants.

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a>b) and x^(2)-y^(2)=c^(2) cut at right angles,then: