Home
Class 14
MATHS
If (x)/(16)=(196)/(x) , then value of |...

If `(x)/(16)=(196)/(x)` , then value of `|x|` is

A

28

B

36

C

52

D

56

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{x}{16} = \frac{196}{x}\), we will follow these steps: ### Step 1: Cross-multiply the equation We start with the given equation: \[ \frac{x}{16} = \frac{196}{x} \] Cross-multiplying gives us: \[ x \cdot x = 196 \cdot 16 \] This simplifies to: \[ x^2 = 196 \cdot 16 \] ### Step 2: Calculate \(196 \cdot 16\) Next, we need to calculate \(196 \cdot 16\): \[ 196 \cdot 16 = 3136 \] So we now have: \[ x^2 = 3136 \] ### Step 3: Take the square root of both sides To find \(x\), we take the square root of both sides: \[ x = \pm \sqrt{3136} \] ### Step 4: Calculate \(\sqrt{3136}\) Now we calculate \(\sqrt{3136}\): \[ \sqrt{3136} = 56 \] Thus, we have: \[ x = \pm 56 \] ### Step 5: Find the absolute value \(|x|\) Finally, we need to find the absolute value of \(x\): \[ |x| = 56 \] ### Final Answer The value of \(|x|\) is: \[ \boxed{56} \]

To solve the equation \(\frac{x}{16} = \frac{196}{x}\), we will follow these steps: ### Step 1: Cross-multiply the equation We start with the given equation: \[ \frac{x}{16} = \frac{196}{x} \] Cross-multiplying gives us: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(4)x4^(2)=16^(x), then find the value of x

If x+(16)/(x)=8 , then the value of x^2+(32)/(x^2) is:

If x+16/x=8 , then the value of x^2+32/x^2 is: यदि x+16/x=8 ,तो x^2+32/x^2 का मान ज्ञात करें:

If x+1/(16x)=3 , then the value of 16x^3+1/ (256x^3) is: