Home
Class 14
MATHS
Find the value of [3(1)/(4)div{1(1)/(4)-...

Find the value of `[3(1)/(4)div{1(1)/(4)-(1)/(2)(2(1)/(2)-overline((1)/(4)-(1)/(6)))}]`

A

75

B

78

C

`72(3)/(4)`

D

`75(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{3 \frac{1}{4}}{1 \frac{1}{4} - \frac{1}{2} \left(2 \frac{1}{2} - \left(\frac{1}{4} - \frac{1}{6}\right)\right)}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert all mixed numbers into improper fractions: - \(3 \frac{1}{4} = \frac{13}{4}\) - \(1 \frac{1}{4} = \frac{5}{4}\) - \(2 \frac{1}{2} = \frac{5}{2}\) ### Step 2: Simplify the Inner Expression Now, we need to simplify the expression inside the denominator: \[ \frac{5}{4} - \frac{1}{2} \left(\frac{5}{2} - \left(\frac{1}{4} - \frac{1}{6}\right)\right) \] ### Step 3: Calculate \(\frac{1}{4} - \frac{1}{6}\) To subtract \(\frac{1}{4}\) and \(\frac{1}{6}\), we need a common denominator. The least common multiple of 4 and 6 is 12: \[ \frac{1}{4} = \frac{3}{12}, \quad \frac{1}{6} = \frac{2}{12} \] Thus, \[ \frac{1}{4} - \frac{1}{6} = \frac{3}{12} - \frac{2}{12} = \frac{1}{12} \] ### Step 4: Substitute Back into the Expression Now substitute back into the expression: \[ \frac{5}{4} - \frac{1}{2} \left(\frac{5}{2} - \frac{1}{12}\right) \] ### Step 5: Calculate \(\frac{5}{2} - \frac{1}{12}\) Again, we need a common denominator. The least common multiple of 2 and 12 is 12: \[ \frac{5}{2} = \frac{30}{12} \] Thus, \[ \frac{5}{2} - \frac{1}{12} = \frac{30}{12} - \frac{1}{12} = \frac{29}{12} \] ### Step 6: Substitute and Simplify Now substitute this back: \[ \frac{5}{4} - \frac{1}{2} \cdot \frac{29}{12} \] Calculating \(\frac{1}{2} \cdot \frac{29}{12} = \frac{29}{24}\): \[ \frac{5}{4} - \frac{29}{24} \] ### Step 7: Find a Common Denominator The least common multiple of 4 and 24 is 24: \[ \frac{5}{4} = \frac{30}{24} \] Thus, \[ \frac{30}{24} - \frac{29}{24} = \frac{1}{24} \] ### Step 8: Final Division Now we have: \[ \frac{13}{4} \div \frac{1}{24} \] This is the same as multiplying by the reciprocal: \[ \frac{13}{4} \cdot 24 = \frac{13 \cdot 24}{4} = \frac{312}{4} = 78 \] ### Final Answer The value of the expression is \(78\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]

[4(1)/(5)-:{1(3)/(4)-(1)/(2)(3(1)/(2)-(1)/(4)-(1)/(6))}]

Find the value of 1/4 div 1/2 is :

Find the value of 4-(5)/(1+(1)/(3+(1)/(2+(1)/(2+(1)/(4)))))

Find the value of (-4m)^(3) div (1)/((2m)^(2))

Find the value of 1-(1)/(2)+(1)/(3)-(1)/(4)+(1)/(5)-(1)/(6)+...

Find the value of 3 frac(1)(4) div 5frac(1)(2)(1-frac(1)(4))