Home
Class 14
MATHS
Factorise the following (x^(2)-6xy+9y^(...

Factorise the following `(x^(2)-6xy+9y^(2))-25`

A

`(x-5)(x+5)`

B

`(x-y-5)(x-y+5)`

C

`(x+3y+5)(x-3y-5)`

D

`(x-3y-5)(x-3y+5)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( (x^2 - 6xy + 9y^2) - 25 \), we can follow these steps: ### Step 1: Recognize the structure of the expression The expression \( x^2 - 6xy + 9y^2 \) can be recognized as a perfect square trinomial. ### Step 2: Rewrite the perfect square trinomial The expression \( x^2 - 6xy + 9y^2 \) can be rewritten as: \[ (x - 3y)^2 \] This is because: \[ (x - 3y)(x - 3y) = x^2 - 3yx - 3yx + 9y^2 = x^2 - 6xy + 9y^2 \] ### Step 3: Substitute back into the original expression Now, we can substitute this back into the original expression: \[ (x - 3y)^2 - 25 \] ### Step 4: Recognize this as a difference of squares The expression \( (x - 3y)^2 - 25 \) can be recognized as a difference of squares. Recall that \( a^2 - b^2 = (a + b)(a - b) \). ### Step 5: Identify \( a \) and \( b \) Here, let: - \( a = (x - 3y) \) - \( b = 5 \) (since \( 25 = 5^2 \)) ### Step 6: Apply the difference of squares formula Using the difference of squares formula: \[ (x - 3y)^2 - 5^2 = (x - 3y + 5)(x - 3y - 5) \] ### Final Factorized Form Thus, the factorized form of the expression \( (x^2 - 6xy + 9y^2) - 25 \) is: \[ (x - 3y + 5)(x - 3y - 5) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise the following : 4x^(2) + 8y^(2) + 12xy

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Factorise the following : (i) 4x^(2)+20x+25 " " (ii) 9y^(2)-66yz+121z^(2) " " (iii) (2x+(1)/(3))^(2)-(x-(1)/(2))^(2)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (x ^(3) y)/( 9) - ( xy ^(3))/(16)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (x ^(2))/(9) - (y ^(2))/( 25)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). ( 4x ^(2))/(9) - ( 9y ^(2))/( 16)

Factorise 4x^(2)-9y^(2)

Add the following 5y^2x^2, -6xy, 8x^2y^2, 3xy