Home
Class 14
MATHS
If 1^(2) +2^(2) + …+ 9^(2)=285, then the...

If `1^(2) +2^(2) + …+ 9^(2)=285`, then the value of `(0.11)^(2) + (0.22)^(2) + …+ (0.99)^(2)` is

A

3.4485

B

2.4485

C

0.24485

D

0.34485

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will calculate the value of \( (0.11)^2 + (0.22)^2 + \ldots + (0.99)^2 \) using the information given. ### Step 1: Understand the series The series given is: \[ (0.11)^2 + (0.22)^2 + (0.33)^2 + (0.44)^2 + (0.55)^2 + (0.66)^2 + (0.77)^2 + (0.88)^2 + (0.99)^2 \] This can be rewritten in terms of fractions: \[ \left(\frac{11}{100}\right)^2 + \left(\frac{22}{100}\right)^2 + \left(\frac{33}{100}\right)^2 + \ldots + \left(\frac{99}{100}\right)^2 \] ### Step 2: Factor out common terms Notice that each term can be expressed as: \[ \left(\frac{11k}{100}\right)^2 \quad \text{for } k = 1, 2, \ldots, 9 \] Thus, we can factor out \( \left(\frac{11}{100}\right)^2 \): \[ \left(\frac{11}{100}\right)^2 \left(1^2 + 2^2 + 3^2 + \ldots + 9^2\right) \] ### Step 3: Substitute the known sum From the problem, we know that: \[ 1^2 + 2^2 + 3^2 + \ldots + 9^2 = 285 \] So we can substitute this into our expression: \[ \left(\frac{11}{100}\right)^2 \times 285 \] ### Step 4: Calculate \( \left(\frac{11}{100}\right)^2 \) Calculating \( \left(\frac{11}{100}\right)^2 \): \[ \left(\frac{11}{100}\right)^2 = \frac{121}{10000} \] ### Step 5: Multiply by 285 Now we multiply: \[ \frac{121}{10000} \times 285 \] ### Step 6: Simplify the multiplication First, we can simplify: \[ \frac{121 \times 285}{10000} \] ### Step 7: Calculate \( 121 \times 285 \) Calculating \( 121 \times 285 \): \[ 121 \times 285 = 34485 \] ### Step 8: Divide by 10000 Now we divide: \[ \frac{34485}{10000} = 3.4485 \] ### Final Answer Thus, the value of \( (0.11)^2 + (0.22)^2 + \ldots + (0.99)^2 \) is: \[ \boxed{3.4485} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (0.9)^2 - ( 0.6 )^2 is

If 1^(3) + 2^(3) +……. + 9^(3) =2025, then the approximate value of (0.11)^(3)+(0.22)^(3) +…..+ (0.99)^(3) is

If a^(2)+a+1=0 , then the value of a^(9) is

The value of 0.002 + 2.02 +0.22 is

If 1^3+2^3+ dot +9^3=2025 , then the value of (0. 11)^3+(0. 22)^3+ dot+(0. 99)^3 is close to (a) 0.2695 (b) 0.3695 (c) 2.695 (d) 3.695

x=(-1)/(11) , then the value of 0.2(2x-1)-0.5(3x-1) is