Home
Class 14
MATHS
If a^(**) b=a^(2)+b^(2)-ab for all natur...

If `a^(**) b=a^(2)+b^(2)-ab` for all natural numbers a and b, then the value of `9^(**) 10` is

A

181

B

90

C

91

D

182

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a^{**} b = a^2 + b^2 - ab \) for natural numbers \( a \) and \( b \), we need to find the value of \( 9^{**} 10 \). ### Step-by-Step Solution: 1. **Identify the values of \( a \) and \( b \)**: Here, we have \( a = 9 \) and \( b = 10 \). 2. **Substitute \( a \) and \( b \) into the formula**: We use the given operation: \[ 9^{**} 10 = 9^2 + 10^2 - 9 \cdot 10 \] 3. **Calculate \( 9^2 \)**: \[ 9^2 = 81 \] 4. **Calculate \( 10^2 \)**: \[ 10^2 = 100 \] 5. **Calculate \( 9 \cdot 10 \)**: \[ 9 \cdot 10 = 90 \] 6. **Combine the results**: Now substitute these values back into the equation: \[ 9^{**} 10 = 81 + 100 - 90 \] 7. **Perform the addition and subtraction**: First, add \( 81 + 100 \): \[ 81 + 100 = 181 \] Then subtract \( 90 \): \[ 181 - 90 = 91 \] 8. **Final result**: Thus, the value of \( 9^{**} 10 \) is: \[ \boxed{91} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^a=3 and 9^b=4 then the value of a.b is

If a^(2)-b^(2)=13 where a and b are natural numbers,then value of a is

If a + b = 9 and ab = 10, find the value of a^2+b^2.

If a + b = 9 and a^2 + b^2 = 53 , then find the value of ab

If 2a - 9 = b + a , then the value of (|a - b| + |b - a|) is :

If a,b are natural numbers such that 2013 + a^2 = b^2, then the minimum possible value of ab is: (A). 671 (B). 668 (C). 658 (D). 645

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .