Home
Class 11
MATHS
The angle between the two tangents from ...

The angle between the two tangents from the origin to the circle`(x-7)^2+ (y+1)^2=25` equals
(A) `pi/4` (B) `pi/3`

(C) `pi/2` (D) `pi/6`

Text Solution

Verified by Experts

y=mx
`(x-7)^2+(mx+1)^2`=25
`x^2+14x+49+m^2x^2+2mx+1=25`
`(1+m^2)x^2+(2m-14)x+25=0`
D=0
`b^2-4ac`
`(2m-14)^2-4(1+m^2)25=0`
`4(m-7)-4*25(1+m^2)=0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the tangents drawn from the point (1, 4) to the parabola y^2=4x is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

The angle between the tangents drawn from the point (1,4) to the parabola y^2=4x is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

The angle between the tangents drawn from the point (1,4) to the parabola y^2=4x is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

The angle between the tangents drawn from the point (1,4) to the parabola y^(2)=4x is (A) (pi)/(6)(B)(pi)/(4) (C) (pi)/(3) (D) (pi)/(2)

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is (a) pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is (a) pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is (a) pi/2 (b) pi/3 (c) pi (d) pi/4

The angles at which the circles (x-1)^2+y^2=10 and x^2+(y-2)^2=5 intersect is pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The angles at which the circles (x-1)^2+y^2=10a n dx^2+(y-2)^2=5 intersect is pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The angles at which the circles (x-1)^2+y^2=10a n dx^2+(y-2)^2=5 intersect is pi/6 (b) pi/4 (c) pi/3 (d) pi/2