Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
MATRICES
ARIHANT PUBLICATION|Exercise ODISHA BUREAU .S TEXTBOOK SOLUTIONS (Exercise (b) )|43 VideosLINEAR PROGRAMMING
ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (Long Answer Type Questions 6 Marks)|18 VideosPROBABILITY
ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE(LONG ANSWER TYPE QUESTIONS)|17 Videos
Similar Questions
Explore conceptually related problems
ARIHANT PUBLICATION-MATRICES -CHAPTER PRACTICE (Very Short Answer Type Questions)
- If A and B are symmetric matrices , then prove that BA - 2AB is neithe...
Text Solution
|
- Express the matrix A=[{:(3,1),(5,-1):}] as the sum of a symmetric and...
Text Solution
|
- If possible then find the value of BA and AB , where A=[{:(2,1,2),(1,2...
Text Solution
|
- A=[{:(3,-4),(1,1),(2,0):}]andB=[{:(2,1,2),(1,2,4):}], then verify that...
Text Solution
|
- If A=[{:(,),(,):}]andB=[{:(,),(,):}] , then find the matrices A^(2),B^...
Text Solution
|
- If A=[{:(0,1),(1,1):}]andB=[{:(0,-1),(1,0):}], then show that (A+B)(A-...
Text Solution
|
- If A=[{:(2,1):}],B=[{:(5,3,4),(8,7,6):}]andC=[{:(-1,2,1),(1,0,2):}] t...
Text Solution
|
- If A=[{:(0,6,7),(-6,0,8),(7,-8,0):}],B=[{:(0,1,1),(1,0,2),(1,2,0):}]an...
Text Solution
|
- How many different matrix products can you form with these three matri...
Text Solution
|
- Solve the matrix [{:(x,-5,-1):}][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4...
Text Solution
|
- If A(alpha)=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}], then prove...
Text Solution
|
- If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , then find the va...
Text Solution
|
- If [{:(2,1,3):}][{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}]=A ...
Text Solution
|
- Find the matrix A satisfying the equation [{:(2,1),(3,2):}].A.[{:(-3...
Text Solution
|
- If A=[{:(1,0,2),(0,2,1),(2,0,3):}], then prove that A is a root of th...
Text Solution
|
- Let A=[{:(2,3),(-1,2):}]andf(x)=x^(2)-4x+7 . Show that f(A)=O. Use thi...
Text Solution
|
- If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] , then find A^(2)-5A+6I.
Text Solution
|
- If A=[{:(2,3),(1,2):}], then prove that A^(3)-4A^(2)+A=O.
Text Solution
|
- If A=[{:(1,0),(-1,7):}], thenfind k such that A^(2)-8A+kI=O.
Text Solution
|
- If A=[{:(3,-2),(4,-2):}], then find k such that A^(2)=kA-2I .
Text Solution
|