Home
Class 12
MATHS
If f(x)=cos^(-1)(sinx), then find f'.(x)...

If `f(x)=cos^(-1)(sinx)`, then find `f'.(x)`

Text Solution

Verified by Experts

The correct Answer is:
`-1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART III) QUESTION FOR PRACTICE (4 MARK) |13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART IV) Sample Question|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART III) Sample Questions |8 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cos x-sinx| then find f ' ((pi)/(6))

If f(x)=tan^(-1)x , then find f''(x).

If f(x)=abs(cos 2x) , then find f'(pi/4+0)

If f(x)=|cos x| then find f(3pi)/(4)

If f(x)=(1-x^(3))^(1/3) then find fof(x) .

If f'(x)=e^x+1/(1+x^2) and f(0)=1, then find f(x).

If f(x)=cosx-underset(0)overset(x)int(x-1)f(t)dt , then find f''(x)+f(x) .

If (f(x))^(n) = f(nx) , find (f'(nx))/(f'(x)) .

If f(x)=sinx and g(x)=x^(3) , then find the value of [f(x).g(x)]..."at"x=(pi)/(2)

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0