Home
Class 12
MATHS
If (x-y)*e^((x)/(x-y))=a, then prove tha...

If `(x-y)*e^((x)/(x-y))=a`, then prove that `y(dy)/(dx)+x=2y`.

Text Solution

Verified by Experts

The correct Answer is:
2y
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART V) QUESTION FOR PRACTICE (6 MARK) |6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VI) Sample Questions |3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART V) QUESTION FOR PRACTICE (1 MARK) |5 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos

Similar Questions

Explore conceptually related problems

If (x)/(x-y)=log((a)/(x-y)) , then prove that (dy)/(dx)=2-(x)/(y) .

If y=(x)/(x+2) then prove that x(dy)/(dx)=(1-y)y .

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))