Home
Class 12
MATHS
If y^(x)=e^(y-x), then prove that (dy)/(...

If `y^(x)=e^(y-x)`, then prove that `(dy)/(dx)=((1+log y)^(2))/(logy)`.

Text Solution

Verified by Experts

The correct Answer is:
`((1+llogy)^(2))/(logy)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART V) QUESTION FOR PRACTICE (6 MARK) |6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VI) Sample Questions |3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART V) QUESTION FOR PRACTICE (1 MARK) |5 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos

Similar Questions

Explore conceptually related problems

If y=(x)/(x+2) then prove that x(dy)/(dx)=(1-y)y .

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx) .

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If (x-y)*e^((x)/(x-y))=a , then prove that y(dy)/(dx)+x=2y .