Home
Class 12
MATHS
If x=ae^(t)(sint+cost) and y=ae^(t)(sint...

If `x=ae^(t)(sint+cost)` and `y=ae^(t)(sint-cost)`, then prove that `(dy)/(dx)=(x+y)/(x-y)`.

Text Solution

Verified by Experts

The correct Answer is:
`(x+y)/(-y+x)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VI) QUESTION FOR PRACTICE (4 MARK) |9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VI) QUESTION FOR PRACTICE (6 MARK) |2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART V) QUESTION FOR PRACTICE (6 MARK) |6 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos

Similar Questions

Explore conceptually related problems

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

if x=e^(t)sin t and y=e^(t)cos t , then prove that (x+y)^(2)(d^(2)y)/dx^(2)=2(xdy/dx-y) .

If y=(x)/(x+2) then prove that x(dy)/(dx)=(1-y)y .

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If (x)/(x-y)=log((a)/(x-y)) , then prove that (dy)/(dx)=2-(x)/(y) .

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .