Home
Class 12
MATHS
If x=t+(1)/(t),y=t-(1)/(t), then find (d...

If `x=t+(1)/(t),y=t-(1)/(t)`, then find `(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`(t^(2)+1)/(t^(2)-1)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VI) QUESTION FOR PRACTICE (6 MARK) |2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VII) Sample Questions |3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART VI) Sample Questions |3 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos

Similar Questions

Explore conceptually related problems

If x=a((1-t^(2))/(1+t^(2))) and y=(2t)/(1-t^(2)) , then find (dy)/(dx) .

If x=at^(2),y=2at then find (dy)/(dx) at t=(1)/(2)

If x=(sin^(3)t)/(sqrt(cos2t)) and y=(cos^(3)t)/(sqrt(cos2t)) , then find (dy)/(dx) .

If x=a((1+t^2)/(1-t^2)),y=(2t)/(1-t^2) find dy/dx at t=1/sqrt3 .

If y=acost,x=asint , then find (d^(2)y)/(dx^(2)) at t=pi/3 .

If x=a(cost+tsint) and y=a(sint-tcost) , then find (d^(2)y)/(dx^(2)) at t=(pi)/(4) .

If sin y=(2t)/(1 + t^2) , cos x= 1/(sqrt(1+t^2)) then show that (dy)/(dx) is independent of t.