Home
Class 12
MATHS
For any three vectors vec(a), vec(b) and...

For any three vectors `vec(a), vec(b)` and `vec(c)`, prove that `vec(a) xx (vec(b) - vec(c)) = (vec(a) xx vec(b)) - (vec(a) xx vec(c))`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part I Basic Concepts) Very Short Answer Type Questions|15 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part I Basic Concepts) Short Answer Type Questions|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

For any three vectors vec(a), vec(b) and vec(c) , evaluate vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) .

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) + vec(b) + vec(c) = vec(0) , then prove that vec(a) xx vec(b) = vec(b) xx vec(c) = vec(c) xx vec(a) .

Prove that for any three vectors vec(a), vec(b) and vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)]

Show that (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xxvec(b)) .

Prove that vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) = vec(0)

Prove that [vec(a)vec(b)vec(c) + vec(d)] = [vec(a)vec(b)vec(c)] + [vec(a) vec(b)vec(d)] .