Home
Class 12
MATHS
Show that hat(i) xx (vec(a) xx hat(i)) +...

Show that `hat(i) xx (vec(a) xx hat(i)) + hat(j) xx (vec(a) xx hat(j)) + hat(k) xx (vec(a) xx hat(k)) = 2 vec(a)`.

Text Solution

Verified by Experts

The correct Answer is:
`2vec(a)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part I Basic Concepts) Very Short Answer Type Questions|15 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part I Basic Concepts) Short Answer Type Questions|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors vec(a) = 3hat(i) - 2hat(j) + hat(k), vec(b) = hat(i) - 3hat(j) + 5hat(k) and vec(c) = 2hat(i) + hat(j) - 4hat(k) form a right angled triangle.

Show that the vectors vec(a) = hat(i) - 2hat(j) + 3hat(k), vec(b) = -2hat(i) + 3hat(j) - 4hat(k) and vec(c) = hat(i) - 3hat(j) + 5hat(k) are coplanar.

If vec(r) = x hat(i) + y hat(j) + z hat(k) , then find (vec(r) xx hat(i)).(vec(r) xx hat(j)) + xy .

For an vector vec(r) = x hat(i) + y hat(j) + z hat(k) , prove that vec(r) = (vec(r). hat(i))hat(i) + (vec(r).hat(j))hat(j) + (vec(r) .hat(k)) hat(k)