Home
Class 12
MATHS
If the straight line x cos alpha + y sin...

If the straight line `x cos alpha + y sin alpha = p` touches the curve `(x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1`, then prove that `a^(2) cos^(2) alpha + b^(2) sin^(2) alpha = p^(2)`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 5

    ARIHANT PUBLICATION|Exercise Short answer type question|25 Videos
  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

If x cos alpha + y sin alpha = p is a tangent to the curve (x/a)^(n/n-1) +(y/b)^(n/n-1) = 1 then so that (a cos alpha)^n + (b sin alpha)^n = p^n .

Find the condition that the line x cos alpha+y sin alpha = P mam be a tangent to the curve x^2/a^2+y^2/b^2=1 .

Prove that the line xcosalpha+ysinalpha=p touches the ellipse (x^2/a^2+y^2/b^2)=1 If p^2=a^2coas^2alpha+b^2sin^2alpha .

Show that the line y=mx+c touches the curve x^2/a^2-y^2/b^2 = 1 if c^2=a^2m^2-b^2

If "sin"^(-1)(x/a) + "sin"^(-1) (y/b)=alpha "prove that" x^2/a^2+(2xy)/(ab) "cos" alpha+y^2/b^2 ="sin"^2 alpha