Home
Class 12
MATHS
If y=xlog((x)/(a+bx)), prove that (d^(2)...

If `y=xlog((x)/(a+bx))`, prove that `(d^(2)y)/(dx^(2))=(1)/(x)((a)/(a+bx))^(2)`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 5

    ARIHANT PUBLICATION|Exercise Short answer type question|25 Videos
  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

If y=x^(x) , then prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y =x log (x/(a+bx)) then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2 .

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If (x)/(x-y)=log((a)/(x-y)) , then prove that (dy)/(dx)=2-(x)/(y) .

Solve (d^(2)y)/(dx^2)= 6x+2 .

If y=tanx+secx , then prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))