Home
Class 12
MATHS
Prove that |(1, a, a^3),(1, b, b^3),(1, ...

Prove that `|(1, a, a^3),(1, b, b^3),(1, c, c^3)|`= (a-b)(b-c)(c-a)(a+b+c).

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -2 QUESTION FOR PRACTICE |10 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -3 QUESTION FOR PRACTICE |11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

Using properties of determinants , prove that |{:(1,a,bc),(1,b,ca),(1,c,ab):}|=(a-b)(b-c)(c-a)

Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Without expanding prove abs((bc, a, a^2),(ca, b, b^2),(ab, c, c^2))=abs((1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3))

Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

Prove that abs((-2a,a+b,c+a),(a+b,-2b,b+c),(c+a,c+b,-2c))=4(b+c)(c+a)(a+b)

Prove that the following. [[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]] = abc(a-b)(b-c)(c-a)

Prove that |[a-b-c,2a,2a],[2b, b-c-a, 2b],[2c, 2c, c-a-b]|= (a+b+c)^3 .

Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c),(c-a),(a-b)

ARIHANT PUBLICATION-DETERMINANTS -PART -1 QUESTION FOR PRACTICE
  1. Solve for x, |{:(15-2x,11,10),(11-3x,17,16),(7-x,14,13):}|=0

    Text Solution

    |

  2. IF cos 2 theta=0 then simplify |{:(0,cos theta, sin theta),(cos theta,...

    Text Solution

    |

  3. Prove that |(1, a, a^3),(1, b, b^3),(1, c, c^3)|= (a-b)(b-c)(c-a)(a+b+...

    Text Solution

    |

  4. using the properties of determinants prove that |{:(1,x+y,x^2+y^2),(...

    Text Solution

    |

  5. Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1...

    Text Solution

    |

  6. Prove that the following. [[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3...

    Text Solution

    |

  7. Using properties of determinants solve the following for x, |{:(x+a,x,...

    Text Solution

    |

  8. Solve [[a+x,a-x,a-x],[a-x,a+x,a-x],[a-x,a-x,a+x]]=0

    Text Solution

    |

  9. IF |{:(4-x,4+x,4+x),(4+x,4-x,4+x),(4+x,4+x,4-x):}|=0 then find the val...

    Text Solution

    |

  10. Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

    Text Solution

    |

  11. Using properties of determinant prove that |{:(alpha,beta,gamma),(alph...

    Text Solution

    |

  12. IF a,b and c are real numbers and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  13. Using the properties of determinants prove that |{:(a+b+2c,a,b),(c,b...

    Text Solution

    |

  14. Find the value of x if |(2x,3),(1,x)|=|(3,4),(-1,2)|

    Text Solution

    |

  15. Prove that |[x+y, x, x],[5x+4y, 4x, 2x], [10x+8y, 8x, 3x]|=x^3

    Text Solution

    |

  16. If x,y and z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),...

    Text Solution

    |

  17. Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c]...

    Text Solution

    |

  18. Show that Delta =Delta1 where Delta=|{:(Ax,x^2,1),(By,y^2,1),(Cz,z^2...

    Text Solution

    |

  19. IFDelta=|{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| and Delta1=|{:(1,1,1),(yz,...

    Text Solution

    |

  20. Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^...

    Text Solution

    |