Home
Class 12
MATHS
Using properties of determinant prove th...

Using properties of determinant prove that `|{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -2 QUESTION FOR PRACTICE |10 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -3 QUESTION FOR PRACTICE |11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

If "cos"^(-1)alpha+"cos"^(-1)beta+"cos"^(-1)gamma=3pi , then find alpha(beta+gamma)+beta(gamma+alpha)+gamma(alpha+beta) .

int 2 sin (alpha-beta) x sin (alpha+beta) x dx

If A_(alpha)=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , then prove that A_(alpha)A_(beta)=A_(alpha+beta) .

Given cos alpha+cos beta +cos gamma=sin alpha+sin beta +sin gamma=0 Show that cos3 alpha+cos3 beta+cos 3gamma = 3 cos(alpha +beta+ gamma)

The coordinates of the vertices of a triangle are (alpha_1 , beta_1) , (alpha_2 , beta_2) and (alpha_3 , beta_3) Prove that the coordinates of its centroid are (alpha_1 + alpha_2 + alpha_3)//(3) , (beta_1 + beta_2 + beta_3)//(3) .

If 2tanalpha=3tanbeta , then prove that then show that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

If cosalpha=cosbeta , then alpha+beta= ____

ARIHANT PUBLICATION-DETERMINANTS -PART -1 QUESTION FOR PRACTICE
  1. IF |{:(4-x,4+x,4+x),(4+x,4-x,4+x),(4+x,4+x,4-x):}|=0 then find the val...

    Text Solution

    |

  2. Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

    Text Solution

    |

  3. Using properties of determinant prove that |{:(alpha,beta,gamma),(alph...

    Text Solution

    |

  4. IF a,b and c are real numbers and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  5. Using the properties of determinants prove that |{:(a+b+2c,a,b),(c,b...

    Text Solution

    |

  6. Find the value of x if |(2x,3),(1,x)|=|(3,4),(-1,2)|

    Text Solution

    |

  7. Prove that |[x+y, x, x],[5x+4y, 4x, 2x], [10x+8y, 8x, 3x]|=x^3

    Text Solution

    |

  8. If x,y and z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),...

    Text Solution

    |

  9. Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c]...

    Text Solution

    |

  10. Show that Delta =Delta1 where Delta=|{:(Ax,x^2,1),(By,y^2,1),(Cz,z^2...

    Text Solution

    |

  11. IFDelta=|{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| and Delta1=|{:(1,1,1),(yz,...

    Text Solution

    |

  12. Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^...

    Text Solution

    |

  13. If f(x)=|{:(a,-1,0),(ax,a,-1),(ax^2,ax,a):}| then using properties of...

    Text Solution

    |

  14. Find the maximum value of Delta=|{:(1,1,1),(1,1+sin theta,1),(1,1,1+co...

    Text Solution

    |

  15. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  16. If a, b and c are all positive real, then prove that minimum value of ...

    Text Solution

    |

  17. Prove that |{:(x^2+1,xy,xz),(xy,y^2+1,yz),(xz,yz,z^2+1):}|=1+x^2+y^2+z...

    Text Solution

    |

  18. Answer any three questions Using properties of determinants, prove t...

    Text Solution

    |

  19. Show that |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}...

    Text Solution

    |

  20. Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|=|{:(1,1,1),(x^2,y^2,...

    Text Solution

    |