Home
Class 12
MATHS
If a, b and c are all positive real, the...

If a, b and c are all positive real, then prove that minimum value of determinant
`|{:(a^2+1,ab,ac),(ab,b^2+1,bc),(ac,bc,c^2+1):}|` = `1+a^2+b^2+c^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -2 QUESTION FOR PRACTICE |10 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -3 QUESTION FOR PRACTICE |11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Prove the following: [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] =1+a^2+b^2+c^2

Find the minimum value of abs[[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]]

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Show that without expanding at any stage |{:(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab):}|=0

Using properties of determinants , prove that |{:(1,a,bc),(1,b,ca),(1,c,ab):}|=(a-b)(b-c)(c-a)

Without expanding the determinants prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}| = |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

Using properties of determinants, prove the following abs{:(a^2, bc, ac +c^2 ),(a^(2) + ab, b^(2),ac ),(ab, b^(2) + bc,c^(2) ):}=4a^(2) b^(2) c^(2) .

show that |[a^2+x^2,ab ,ac],[ab,b^2+x^2,bc],[ac,bc,c^2+x^2]| is divisible x^4

ARIHANT PUBLICATION-DETERMINANTS -PART -1 QUESTION FOR PRACTICE
  1. IF a,b and c are real numbers and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  2. Using the properties of determinants prove that |{:(a+b+2c,a,b),(c,b...

    Text Solution

    |

  3. Find the value of x if |(2x,3),(1,x)|=|(3,4),(-1,2)|

    Text Solution

    |

  4. Prove that |[x+y, x, x],[5x+4y, 4x, 2x], [10x+8y, 8x, 3x]|=x^3

    Text Solution

    |

  5. If x,y and z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),...

    Text Solution

    |

  6. Prove that abs[[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=2abs[[a,b,c]...

    Text Solution

    |

  7. Show that Delta =Delta1 where Delta=|{:(Ax,x^2,1),(By,y^2,1),(Cz,z^2...

    Text Solution

    |

  8. IFDelta=|{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| and Delta1=|{:(1,1,1),(yz,...

    Text Solution

    |

  9. Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^...

    Text Solution

    |

  10. If f(x)=|{:(a,-1,0),(ax,a,-1),(ax^2,ax,a):}| then using properties of...

    Text Solution

    |

  11. Find the maximum value of Delta=|{:(1,1,1),(1,1+sin theta,1),(1,1,1+co...

    Text Solution

    |

  12. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  13. If a, b and c are all positive real, then prove that minimum value of ...

    Text Solution

    |

  14. Prove that |{:(x^2+1,xy,xz),(xy,y^2+1,yz),(xz,yz,z^2+1):}|=1+x^2+y^2+z...

    Text Solution

    |

  15. Answer any three questions Using properties of determinants, prove t...

    Text Solution

    |

  16. Show that |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}...

    Text Solution

    |

  17. Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|=|{:(1,1,1),(x^2,y^2,...

    Text Solution

    |

  18. Prove that abs((a,b,c),(a^2,b^2,c^2),(bc,ca,ab))=(a-b)(b-c)(c-a)(ab+bc...

    Text Solution

    |

  19. If a, b and c are all positive real, then prove that minimum value of ...

    Text Solution

    |

  20. Prove the following: [[a+b+c,-c,-b],[-c,a+b+c,-a],[-b,-a,a+b+c]] =...

    Text Solution

    |