Home
Class 12
MATHS
Using coafactors of the elements of thir...

Using coafactors of the elements of third row, evaluate `Delta=|{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -4 QUESTION FOR PRACTICE |27 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -5 QUESTION FOR PRACTICE |28 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -2 QUESTION FOR PRACTICE |10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Using Coafactors of elements of third column evaluate Delta =|{:(1,x,yz),(1,y,zx),(1,z,xy):}|

Write the value of Delta=|{:(x+y,y+z,z+x),(z,x,y),(-3,-3,-3):}|

using the properties of determinants prove that |{:(1,x+y,x^2+y^2),(1,y+z,y^2+z^2),(1,z+x,z^2+x^2):}|=(x-y)(y-z)(z-x)

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),(x,y,a+z):}|=a^2 (a+x+y+z)

Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z, 2z, z-x-y], [x-y-z, 2x, 2x]| = (x+y+z)^3

Find the values of x,y and z , if [{:(x+y,),(x+z,),(y+z,):}]=[{:(9,),(5,),(7,):}] .

Show that Delta =Delta_1 where Delta=|{:(Ax,x^2,1),(By,y^2,1),(Cz,z^2,1):}|,Delta_1=|{:(A,B,C),(x,y,z),(zy,zx,xy):}|