Home
Class 12
MATHS
Using Coafactors of elements of third co...

Using Coafactors of elements of third column evaluate `Delta =|{:(1,x,yz),(1,y,zx),(1,z,xy):}|`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -4 QUESTION FOR PRACTICE |27 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -5 QUESTION FOR PRACTICE |28 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -2 QUESTION FOR PRACTICE |10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Using coafactors of the elements of third row, evaluate Delta=|{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

using the properties of determinants prove that |{:(1,x+y,x^2+y^2),(1,y+z,y^2+z^2),(1,z+x,z^2+x^2):}|=(x-y)(y-z)(z-x)

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

Prove that |{:(x^2+1,xy,xz),(xy,y^2+1,yz),(xz,yz,z^2+1):}|=1+x^2+y^2+z^2

Show that Delta =Delta_1 where Delta=|{:(Ax,x^2,1),(By,y^2,1),(Cz,z^2,1):}|,Delta_1=|{:(A,B,C),(x,y,z),(zy,zx,xy):}|

If x,y and z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3):}|=0 then show that 1+xyz=0