Home
Class 12
MATHS
Given the equations x=cy+bz, y=az+cx a...

Given the equations
x=cy+bz, y=az+cx and z=bx+ay
where x,y and z are not all zero, prove that `a^2+b^2+c^2+2abc=1` by determinant method.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise ODISHA BUREAU.S TEXTBOOK SOLUTIONS (EXERCISE 5(B))|97 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise PART -5 QUESTION FOR PRACTICE |28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Prove that the lines x = ay + b, z = cy + d and x = a'y + b' , z= c'y + d' are perpendicular, if a a' + c c' + 1=0

If cos^-1x+cos^-1y+cos^-1z=pi , prove that x^2+y^2+z^2+2xyz=1 .

The equations x+y+z=6 x+2y+3z=10 x+2y+mz=n given infinite number of value of the triplet (x,y,z,) if

solve 3x - 2y + z = 1 2x + y- 5z = 2 x- y - 2z = 3.

Find the equation of the image of the line (x - 1)/2 = (y + 2)=( z - 1) on the plane 2x-y + z + 1 =0 .

Prove that the circles given by x^2+y^2+2ax+2by+c=0 , and x^2+y^2+2bx+2ay+c=0 , touch each other, if (a + b)^2 = 2c.

Find the 2xx2 mtrix X Given [x y z ]-[-4 3 1] =[-5 1 0] derermine x,y,z.

Prove that the lines x=az+b,y=cz+d and x=a_1z + b_1,y=c_1z+d_1 are perpendicular if aa_1+"cc"_1+1=0.

ARIHANT PUBLICATION-DETERMINANTS -ODISHA BUREAU.S TEXTBOOK SOLUTIONS (EXERCISE 5(A))
  1. Prove that the following. [[1,1,1],[b+c,c+a,c+a],[b^2+c^2,c^2+a^2,a^2+...

    Text Solution

    |

  2. Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

    Text Solution

    |

  3. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  4. Prove that the following. [[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+...

    Text Solution

    |

  5. Prove that the following. [[a,b,c],[a^2,b^2,c^2],[bc,ca,ab]]=(b-c)(c-a...

    Text Solution

    |

  6. Prove that the following. [[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=...

    Text Solution

    |

  7. Prove that the following. |[(v+w)^2,u^2,u^2],[v^2,(w+u)^2,v^2],[w^2,w...

    Text Solution

    |

  8. Factorize the following. [[x+a,b,c],[b,x+c,a],[c,a,x+b]]

    Text Solution

    |

  9. Factorize the following. [[a,b,c],[b+c,c+a,a+b],[a^2,b^2,c^2]]

    Text Solution

    |

  10. Factorize the following. [[x,2,3],[1,x+1,3],[1,4,x]]

    Text Solution

    |

  11. Show that by eliminating alpha and beta from the equations. aialpha+...

    Text Solution

    |

  12. Prove the following : [[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]]=0

    Text Solution

    |

  13. Prove the following : [[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]]-(5x+4)(4-x...

    Text Solution

    |

  14. Prove the following : [[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,c...

    Text Solution

    |

  15. Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

    Text Solution

    |

  16. Prove that the points : (x1,y1),(x2,y2),(x3,y3) are collinear if [[x...

    Text Solution

    |

  17. If A+B+C = pi, prove that [[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,c...

    Text Solution

    |

  18. Eliminate x,y,z from a=x/y-z, b=y/z-x, c=z/x-y

    Text Solution

    |

  19. Given the equations x=cy+bz, y=az+cx and z=bx+ay where x,y and z a...

    Text Solution

    |

  20. If ax+hy+g=0, hx+by+f=0 and gx+fy+c=lamda, find the value of lamda in ...

    Text Solution

    |