Home
Class 12
MATHS
IF Ay is the cofactor of the element ay ...

IF `A_y` is the cofactor of the element `a_y` of the determinant `|{:(2,-3,5),(6,0,4),(1,5,-7):}|` then write the value of `a_32.A_32`

Text Solution

Verified by Experts

The correct Answer is:
110
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise ODISHA BUREAU.S TEXTBOOK SOLUTIONS (EXERCISE 5(B))|97 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Find the value of determinant |{:(2,-3,5),(6,0,4),(1,5,-7):}|

If x[{:(2,),(3,):}]+y[{:(-1,),(1,):}]=[{:(10,),(5,):}] , then write the value of x and y.

State true or false. The minor and the co-factor of the element a_32 of a determinant of third order are equal.

If [[2x,1],[5,x+2y]]=[[4,1],[5,0]] then find the value of x+y.

The elements a_(ij) of a 3 xx 3 matrix are given by a_(ij)=1/2|-3i +j| . Write the value of element a_32 .

ARIHANT PUBLICATION-DETERMINANTS -CHAPTER PRACTICE
  1. Find the area of triangle , whose vertices are (2,7) (1,1) and (10,8)

    Text Solution

    |

  2. Show that the points (a+5,a-4),(a-2,a+3) and (a,a) do not lie on a st...

    Text Solution

    |

  3. IF Ay is the cofactor of the element ay of the determinant |{:(2,-3,5)...

    Text Solution

    |

  4. For what value of matrix [{:(6-x,4),(3-x,1):}] is a singular matrix?

    Text Solution

    |

  5. For what value of x, A=[(2(x+1),2x),(x,x-2):}]singular matrix

    Text Solution

    |

  6. Find x if [(1,2,x),(1,1,1),(2,1,-1):}]is singular

    Text Solution

    |

  7. IF the value of the third order determinant is 12, then find the value...

    Text Solution

    |

  8. IF for the non singular matrix A,A^2=I then find A^-1

    Text Solution

    |

  9. A is a non singular symmetric matrix, write whether A^-1 is symmetric ...

    Text Solution

    |

  10. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  11. Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(...

    Text Solution

    |

  12. Prove the following : [[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]]-(5x+4)(4-x...

    Text Solution

    |

  13. Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|=...

    Text Solution

    |

  14. Without expanding the determinants prove that |{:(a,a^2,bc),(b,b^2,c...

    Text Solution

    |

  15. IF a,b and c are in AP then find the value of the determinant |{:(x+2,...

    Text Solution

    |

  16. Without expanding evaluate the determinant , |{:(sina,sinbeta,sin(a+d...

    Text Solution

    |

  17. Prove that the determinant |{:(x, sin theta, cos theta),(-sin theta,...

    Text Solution

    |

  18. Using properties of determinants evaluate |{:(0,ab^2,ac^2),(a^2b,0,b...

    Text Solution

    |

  19. Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^...

    Text Solution

    |

  20. Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b)...

    Text Solution

    |