Home
Class 12
MATHS
Show that: abs((1,a,a^2),(1,b,b^2),(1,c,...

Show that: `abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise ODISHA BUREAU.S TEXTBOOK SOLUTIONS (EXERCISE 5(B))|97 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

Prove that |(1, a, a^3),(1, b, b^3),(1, c, c^3)| = (a-b)(b-c)(c-a)(a+b+c).

Prove that abs((a,b,c),(a^2,b^2,c^2),(bc,ca,ab))=(a-b)(b-c)(c-a)(ab+bc+ca)

Using properties of determinants , prove that |{:(1,a,bc),(1,b,ca),(1,c,ab):}|=(a-b)(b-c)(c-a)

Without expanding prove abs((bc, a, a^2),(ca, b, b^2),(ab, c, c^2))=abs((1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3))

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Prove that abs((-2a,a+b,c+a),(a+b,-2b,b+c),(c+a,c+b,-2c))=4(b+c)(c+a)(a+b)

ARIHANT PUBLICATION-DETERMINANTS -CHAPTER PRACTICE
  1. IF for the non singular matrix A,A^2=I then find A^-1

    Text Solution

    |

  2. A is a non singular symmetric matrix, write whether A^-1 is symmetric ...

    Text Solution

    |

  3. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  4. Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(...

    Text Solution

    |

  5. Prove the following : [[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]]-(5x+4)(4-x...

    Text Solution

    |

  6. Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|=...

    Text Solution

    |

  7. Without expanding the determinants prove that |{:(a,a^2,bc),(b,b^2,c...

    Text Solution

    |

  8. IF a,b and c are in AP then find the value of the determinant |{:(x+2,...

    Text Solution

    |

  9. Without expanding evaluate the determinant , |{:(sina,sinbeta,sin(a+d...

    Text Solution

    |

  10. Prove that the determinant |{:(x, sin theta, cos theta),(-sin theta,...

    Text Solution

    |

  11. Using properties of determinants evaluate |{:(0,ab^2,ac^2),(a^2b,0,b...

    Text Solution

    |

  12. Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^...

    Text Solution

    |

  13. Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b)...

    Text Solution

    |

  14. Prove the following: [[b^2-ab,b-c,bc-ac],[ab-a^2,a-b,b^2-ab],[bc-ac,...

    Text Solution

    |

  15. Evaluate |{:(1,1,1),(nC1,n+2C1,n+4C1),(nC2,n+2C2,n+4C2):}|

    Text Solution

    |

  16. Find the values of k, if the area of traingle is 4sq units and vertice...

    Text Solution

    |

  17. Show that the points A(a,b+c), B(b,c+a) and C(c,a+b) are collinear.

    Text Solution

    |

  18. IF A=[(1,3,3),(1,4,3),(1,3,4):}] then find |A|

    Text Solution

    |

  19. Find the inverse of the matrixA=[(a,b),(c,(1+bc)/a):}] and show that a...

    Text Solution

    |

  20. If A=[(2,2,1),(-2,1,2),(1,-2,2):}] and B=[(1,3,2),(1,1,1),(2,-3,1):}] ...

    Text Solution

    |