Home
Class 12
MATHS
Prove that |[x, y, z],[x^2, y^2, z^2], [...

Prove that `|[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(z-x)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise ODISHA BUREAU.S TEXTBOOK SOLUTIONS (EXERCISE 5(B))|97 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANSWER TYPE QUESTIONS)|21 Videos

Similar Questions

Explore conceptually related problems

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

Prove that: |[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz

Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2xyz(x+y+z)^3

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(x-y) (y-z) (z-x) (xy+yz+zx)

Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z, 2z, z-x-y], [x-y-z, 2x, 2x]| = (x+y+z)^3

using the properties of determinants prove that |{:(1,x+y,x^2+y^2),(1,y+z,y^2+z^2),(1,z+x,z^2+x^2):}|=(x-y)(y-z)(z-x)

Show that |{:(1,x, x ^(3)),(1,y,y ^(3)),(1,z,z^(3)):}| = (x-y) (y-z) (z-x) (x + y + z)

If x+y+z=xyz , prove that x/(1-x^2)+ y/(1-y^2)+z/(1-z^2) =(4xyz)/((1-x^2)(1-y^2)(1-z^2))

Using properties of determinants prove that |{:(a+x,y,z),(x,a+y,z),(x,y,a+z):}|=a^2 (a+x+y+z)

Prove that x^3+y^3+z^3-3xyz =(x+y+z)(x+omegay+omega^2z)(x+yomega^2+z omega)

ARIHANT PUBLICATION-DETERMINANTS -CHAPTER PRACTICE
  1. A is a non singular symmetric matrix, write whether A^-1 is symmetric ...

    Text Solution

    |

  2. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  3. Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(...

    Text Solution

    |

  4. Prove the following : [[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]]-(5x+4)(4-x...

    Text Solution

    |

  5. Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|=...

    Text Solution

    |

  6. Without expanding the determinants prove that |{:(a,a^2,bc),(b,b^2,c...

    Text Solution

    |

  7. IF a,b and c are in AP then find the value of the determinant |{:(x+2,...

    Text Solution

    |

  8. Without expanding evaluate the determinant , |{:(sina,sinbeta,sin(a+d...

    Text Solution

    |

  9. Prove that the determinant |{:(x, sin theta, cos theta),(-sin theta,...

    Text Solution

    |

  10. Using properties of determinants evaluate |{:(0,ab^2,ac^2),(a^2b,0,b...

    Text Solution

    |

  11. Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^...

    Text Solution

    |

  12. Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b)...

    Text Solution

    |

  13. Prove the following: [[b^2-ab,b-c,bc-ac],[ab-a^2,a-b,b^2-ab],[bc-ac,...

    Text Solution

    |

  14. Evaluate |{:(1,1,1),(nC1,n+2C1,n+4C1),(nC2,n+2C2,n+4C2):}|

    Text Solution

    |

  15. Find the values of k, if the area of traingle is 4sq units and vertice...

    Text Solution

    |

  16. Show that the points A(a,b+c), B(b,c+a) and C(c,a+b) are collinear.

    Text Solution

    |

  17. IF A=[(1,3,3),(1,4,3),(1,3,4):}] then find |A|

    Text Solution

    |

  18. Find the inverse of the matrixA=[(a,b),(c,(1+bc)/a):}] and show that a...

    Text Solution

    |

  19. If A=[(2,2,1),(-2,1,2),(1,-2,2):}] and B=[(1,3,2),(1,1,1),(2,-3,1):}] ...

    Text Solution

    |

  20. If F(alpha)=[(cos a,-sina,0),(sina,cosa,0),(0,0,1):}]andG(beta)=[(cosb...

    Text Solution

    |