Home
Class 7
MATHS
3(1)/(12)-[1(3)/(4)+{2(1)/(2)-(1(1)/(2)-...

`3(1)/(12)-[1(3)/(4)+{2(1)/(2)-(1(1)/(2)-(1)/(3))}]` का मान है -

A

`(1)/(2)`

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3\left(\frac{1}{12}\right) - \left[1\left(\frac{3}{4}\right) + \left\{2\left(\frac{1}{2}\right) - \left(1\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right)\right)\right\}\right] \), we will follow these steps: ### Step 1: Simplify the first term The first term is \( 3\left(\frac{1}{12}\right) \). \[ 3 \times \frac{1}{12} = \frac{3}{12} = \frac{1}{4} \] ### Step 2: Simplify the second term inside the brackets The second term is \( 1\left(\frac{3}{4}\right) \). \[ 1 \times \frac{3}{4} = \frac{3}{4} \] ### Step 3: Simplify the expression inside the curly braces We need to simplify \( 2\left(\frac{1}{2}\right) - \left(1\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right)\right) \). First, calculate \( 2\left(\frac{1}{2}\right) \): \[ 2 \times \frac{1}{2} = 1 \] Next, calculate \( 1\left(\frac{1}{2}\right) \): \[ 1 \times \frac{1}{2} = \frac{1}{2} \] Now, substitute these values into the expression: \[ 1 - \left(\frac{1}{2} - \frac{1}{3}\right) \] ### Step 4: Simplify \( \frac{1}{2} - \frac{1}{3} \) To subtract these fractions, we need a common denominator, which is 6: \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6} \] Thus, \[ \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \] ### Step 5: Substitute back into the expression Now we have: \[ 1 - \frac{1}{6} \] Convert 1 into a fraction with a denominator of 6: \[ 1 = \frac{6}{6} \] So, \[ \frac{6}{6} - \frac{1}{6} = \frac{5}{6} \] ### Step 6: Combine the two parts Now substitute back into the original expression: \[ \frac{1}{4} - \left(\frac{3}{4} + \frac{5}{6}\right) \] ### Step 7: Simplify \( \frac{3}{4} + \frac{5}{6} \) To add these fractions, we need a common denominator, which is 12: \[ \frac{3}{4} = \frac{9}{12}, \quad \frac{5}{6} = \frac{10}{12} \] So, \[ \frac{3}{4} + \frac{5}{6} = \frac{9}{12} + \frac{10}{12} = \frac{19}{12} \] ### Step 8: Final calculation Now we have: \[ \frac{1}{4} - \frac{19}{12} \] Convert \( \frac{1}{4} \) into a fraction with a denominator of 12: \[ \frac{1}{4} = \frac{3}{12} \] Thus, \[ \frac{3}{12} - \frac{19}{12} = \frac{3 - 19}{12} = \frac{-16}{12} = -\frac{4}{3} \] ### Final Answer The value of the expression is: \[ -\frac{4}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(3(3)/(5)) +(1)/(4(8)/(9)) +(1)/(((3)/(5))) का मान ज्ञात करो।

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....

If ((3(1)/(4) )^(4) -(4( 1)/(3))^(4))/( (3,(1)/(4) )^(2) -(4,(1)/(3))^(2) )= ((13a)/(12))^(2) , find a.

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

1/2(1/2+1/3)-1/4((1)/(2^(2))+(1)/(3^(2)))+1/6((1)/(2^(3))+(1)/(3^(3)))+…infty is equal to

यदि x+(1)/(x)=sqrt(3) है तब x^(3)+(1)/(x^(3)) का मान होगा -

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =