Home
Class 8
MATHS
x का मान ज्ञात करो - (2)/(3)[4x-1] -[4x-...

x का मान ज्ञात करो - `(2)/(3)[4x-1] -[4x-(1-3x)/(2)]=(x-7)/(2)`

A

0

B

1

C

2

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{2}{3}[4x-1] - [4x - \frac{(1-3x)}{2}] = \frac{(x-7)}{2} \] we will follow these steps: ### Step 1: Simplify the left-hand side First, we simplify the expression on the left-hand side. The first term is: \[ \frac{2}{3}(4x - 1) = \frac{8x - 2}{3} \] The second term is: \[ 4x - \frac{(1 - 3x)}{2} = 4x - \frac{1}{2} + \frac{3x}{2} = 4x + \frac{3x}{2} - \frac{1}{2} \] To combine \(4x\) and \(\frac{3x}{2}\), we convert \(4x\) to have a common denominator: \[ 4x = \frac{8x}{2} \] Thus, \[ 4x + \frac{3x}{2} = \frac{8x + 3x}{2} = \frac{11x}{2} \] Now, substituting this back into the equation gives: \[ \frac{8x - 2}{3} - \left(\frac{11x}{2} - \frac{1}{2}\right) = \frac{(x-7)}{2} \] ### Step 2: Combine the left-hand side Now we rewrite the left-hand side: \[ \frac{8x - 2}{3} - \frac{11x - 1}{2} \] To combine these fractions, we need a common denominator, which is 6: \[ \frac{8x - 2}{3} = \frac{2(8x - 2)}{6} = \frac{16x - 4}{6} \] \[ \frac{11x - 1}{2} = \frac{3(11x - 1)}{6} = \frac{33x - 3}{6} \] Now we can combine the fractions: \[ \frac{16x - 4 - (33x - 3)}{6} = \frac{16x - 4 - 33x + 3}{6} = \frac{-17x - 1}{6} \] ### Step 3: Set the equation Now we set the left-hand side equal to the right-hand side: \[ \frac{-17x - 1}{6} = \frac{x - 7}{2} \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ -17x - 1 = 3(x - 7) \] ### Step 5: Expand and simplify Expanding the right-hand side: \[ -17x - 1 = 3x - 21 \] Now, we move all terms involving \(x\) to one side and constant terms to the other: \[ -17x - 3x = -21 + 1 \] This simplifies to: \[ -20x = -20 \] ### Step 6: Solve for \(x\) Dividing both sides by -20 gives: \[ x = 1 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{1} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 3/4(7x-1)-(2x-(1-x)/2)=x+3/2

Solve: (4x+2)/(2x+1)+(3x+2)/(4)=(x+4)/(4)

Simplify: (3x+2)(2x+3)-(4x-3)(2x-1)

Find the median of the following data if the value of x = 4 , x -4, 2x - 6, 3x-10 ,(x)/(2) - 1 , ( 3x)/( 2 x - 4) , x + 3, (x)/( 2), 2x + 7, 3x - 2, 2x -5

Solve each of the following equations and also check your result in each case: ((45-2x))/(15)-((4x+10))/5=((15-14 x))/9 5((7x+5)/3)-(23)/3=13-(4x-2)/3 (7x-1)/4-1/3\ (2x-(1-x)/2)=(10)/3 (0. 5(x-0. 4))/(0. 42\ )-(0. 6(x-2. 71))/(0. 42)=x+6. 1

(4x)/3-9/4ltx+3/4; (7x-1)/3-(7x+2)/6>x

Factorise : x^(2) + (1)/(4x^(2)) + 1 - 7x - (7)/(2x)

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Simplify: (3x+2y)(4x+3y)-\ (2x-y)(7x-3y)

Simplify: (x^2-3x+2)(5x-2)-\ (3x^2+4x-5)\ (2x-1)