Home
Class 8
MATHS
(1)/(3(3)/(5)) +(1)/(4(8)/(9)) +(1)/(((3...

`(1)/(3(3)/(5)) +(1)/(4(8)/(9)) +(1)/(((3)/(5)))` का मान ज्ञात करो।

A

`2(59)/(396)`

B

`(854)/(396)`

C

`3(854)/(396)`

D

`(29)/(396)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1}{3 \cdot \frac{3}{5}} + \frac{1}{4 \cdot \frac{8}{9}} + \frac{1}{\frac{3}{5}}\), we will follow these steps: ### Step 1: Simplify each term 1. **First term**: \(\frac{1}{3 \cdot \frac{3}{5}} = \frac{1}{\frac{9}{5}} = \frac{5}{9}\) 2. **Second term**: \(\frac{1}{4 \cdot \frac{8}{9}} = \frac{1}{\frac{32}{9}} = \frac{9}{32}\) 3. **Third term**: \(\frac{1}{\frac{3}{5}} = \frac{5}{3}\) ### Step 2: Rewrite the expression Now we can rewrite the expression using the simplified terms: \[ \frac{5}{9} + \frac{9}{32} + \frac{5}{3} \] ### Step 3: Find a common denominator The denominators are \(9\), \(32\), and \(3\). The least common multiple (LCM) of these numbers is \(288\). ### Step 4: Convert each fraction to have the common denominator 1. **First term**: \[ \frac{5}{9} = \frac{5 \cdot 32}{9 \cdot 32} = \frac{160}{288} \] 2. **Second term**: \[ \frac{9}{32} = \frac{9 \cdot 9}{32 \cdot 9} = \frac{81}{288} \] 3. **Third term**: \[ \frac{5}{3} = \frac{5 \cdot 96}{3 \cdot 96} = \frac{480}{288} \] ### Step 5: Add the fractions Now we can add the fractions: \[ \frac{160}{288} + \frac{81}{288} + \frac{480}{288} = \frac{160 + 81 + 480}{288} = \frac{721}{288} \] ### Step 6: Final answer The final value of the expression is: \[ \frac{721}{288} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

3(1)/(12)-[1(3)/(4)+{2(1)/(2)-(1(1)/(2)-(1)/(3))}] का मान है -

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

यदि x+(1)/(x)=sqrt(3) है तब x^(3)+(1)/(x^(3)) का मान होगा -

(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

Show that 1 + 1/2.(3/5) + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])

Evaluate: g. 5 (1)/(3) xx 8 (1)/(4) xx 2 (3)/(5)

Find the sum : (i) 5/4 + ((-11)/(4)) , (ii) 5/3 + 3/5 , (iii) (-9)/(10) + 22/15 (iv) (-3)/(-11) + 5/9 , (v) (-8)/(19) + ((-2))/(57) , (vi) (-2)/(3) + 0 (vii) -2'1/3 + 4'3/5

Evaluate : [5(8^((1)/(3))+ 27 ^((1)/(3))) ^(3) ]^((1)/(4))